Sulfur K-edge x-ray absorption spectroscopy: a spectroscopic tool to examine the redox state of S-containing metabolites in vivo.

نویسندگان

  • A Rompel
  • R M Cinco
  • M J Latimer
  • A E McDermott
  • R D Guiles
  • A Quintanilha
  • R M Krauss
  • K Sauer
  • V K Yachandra
  • M P Klein
چکیده

The sulfur K-edge x-ray absorption spectra for the amino acids cysteine and methionine and their corresponding oxidized forms cystine and methionine sulfoxide are presented. Distinct differences in the shape of the edge and the inflection point energy for cysteine and cystine are observed. For methionine sulfoxide the inflection point energy is 2.8 eV higher compared with methionine. Glutathione, the most abundant thiol in animal cells, also has been investigated. The x-ray absorption near-edge structure spectrum of reduced glutathione resembles that of cysteine, whereas the spectrum of oxidized glutathione resembles that of cystine. The characteristic differences between the thiol and disulfide spectra enable one to determine the redox status (thiol to disulfide ratio) in intact biological systems, such as unbroken cells, where glutathione and cyst(e)ine are the two major sulfur-containing components. The sulfur K-edge spectra for whole human blood, plasma, and erythrocytes are shown. The erythrocyte sulfur K-edge spectrum is similar to that of fully reduced glutathione. Simulation of the plasma spectrum indicated 32% thiol and 68% disulfide sulfur. The whole blood spectrum can be simulated by a combination of 46% disulfide and 54% thiol sulfur.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X-Ray Absorption Near Edge Spectroscopy of Sulfur in Biomolecules: Two Examples from Glutathione and Insulin

Although a minor constituent of cell and tissues, sulfur is an essential element to fulfil a wide range of biological processes, and it is present in the functional groups of many biomolecules that participate to redox reactions in vivo. Cysteine, one of the two S-containing aminoacids present in proteins, contains sulfur in fully reduced form and its thiol group can undergo a range of reaction...

متن کامل

X-ray Absorption and Emission Spectroscopic Studies of [L2Fe2S2]n Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron–Sulfur Clusters

Herein, a systematic study of [L2Fe2S2](n) model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox change...

متن کامل

Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments' efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense,...

متن کامل

Sulfur K-edge XAS and DFT calculations on P450 model complexes: effects of hydrogen bonding on electronic structure and redox potentials.

Hydrogen bonding (H-bonding) is generally thought to play an important role in tuning the electronic structure and reactivity of metal-sulfur sites in proteins. To develop a quantitative understanding of this effect, S K-edge X-ray absorption spectroscopy (XAS) has been employed to directly probe ligand-metal bond covalency, where it has been found that protein active sites are significantly le...

متن کامل

Structural aspects of the copper sites in cytochrome c oxidase. An X-ray absorption spectroscopic investigation of the resting-state enzyme.

Copper K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the structural details of the coordination environment of the copper sites in eight resting-state samples of beef heart cytochrome c oxidase prepared by different methods. The unusual position and structure of the resting-state copper edge spectrum can be adequately explained by the presence of sulfur-containing liga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 11  شماره 

صفحات  -

تاریخ انتشار 1998